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Abstract
In recent years a new description has been developed for tunnelling in multi-
dimensional systems based on complexified stable–unstable manifolds of
periodic saddles. The complexified stable–unstable manifolds guide complex-
classical tunnelling trajectories over the energetic barrier (Takahashi and
Ikeda 2003 J. Phys. A: Math. Gen. 36 7953). In this paper it is claimed,
based on theoretical analysis and numerical evidence, that the tunnelling
mechanism due to complexified stable–unstable manifolds is associated with
a characteristic plateau feature in the tunnelling spectrum. An analysis of
a particular two-dimensional barrier tunnelling model shows that the plateau
feature is obtained by a fully quantum-mechanical computation, and that the
complex-semiclassical theory successfully reproduces this feature. Moreover,
an analytical theory based upon Melnikov’s method is developed and used to
clarify quantitatively how the tunnelling mechanism due to the complexified
stable–unstable manifolds leads to the formation of the plateau structure; in
particular, it is shown that the classical action along the complexified stable
manifold controls the height of the plateau. The analysis presented here is
based on a particular model, but the main claims should hold for any system
with multi-dimensional barrier tunnelling because of the universality of the
underlying mechanism.
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1. Introduction

The understanding of tunnelling in multi-dimensional systems still remains a challenging
problem. An essential difference between multi-dimensional systems and one-dimensional
systems is that in general they are not integrable and they have complicated dynamical
structures resulting in chaos.

In the past two decades, many theoretical and experimental studies have demonstrated
remarkable effects of chaos-related dynamical structures on tunnelling processes [1–7],
and theoretical investigations into typical processes such as chaos-assisted tunnelling and
resonance-assisted tunnelling have been carried out [1, 2]. However, because of the difficulty
of the problem, the theoretical descriptions still remain mostly at a phenomenological level
based on a hybrid combination of classical, semiclassical and fully quantum approaches.

In order to achieve a complete description for non-integrable multi-dimensional
tunnelling, we have to apply the complex-domain semiclassical theory [8, 9]. This has indeed
been done by several authors, with some success [10–19]. However, the key mechanism
driving tunnelling transport in non-integrable multi-dimensional systems has still remained
unclear. This is mainly because little is known about classical chaotic dynamics which are
continued analytically into the complex phase space for studying tunnelling process. What
we have to do first is to find the key objects in the complexified phase space which control
multi-dimensional tunnelling and to establish a clear theoretical description of them based
upon investigations of minimal models.

In a previous work [19], using a periodically perturbed Eckart-type barrier system as a
model system, we demonstrated that the complexified classical unstable manifold manifests
itself in the tunnelling spectrum as a characteristic plateau-shaped structure. We also indicated
that the underlying mechanism responsible for the formation of a plateau can be well
understood by the theory of complexified stable and unstable manifolds, which our group have
recently proposed as the key to understanding the mechanism of multi-dimensional tunnelling
in classically nonintegrable systems [14–16, 18–20]. In this new tunnelling mechanism, the
major tunnelling probability propagates along the trajectories which go through the complex
phase space being guided by the complexified stable and unstable manifolds. This mechanism
is quite different from the instanton mechanism in which trajectories on the complexified torus
are used and which works in integrable (or very nearly integrable) systems [10]. Therefore,
tunnelling phenomena caused by this new mechanism are qualitatively and quantitatively
different from tunnelling phenomena caused by the instanton mechanism [21].

In the previous work [19], due to the limit length of the letter, we had to resign ourselves
to showing just an outline of our theory and many important details necessary to understand
how the new tunnelling mechanism works in the construction of the plateau spectrum were
omitted. In this paper, we present detailed mathematical descriptions of the major theoretical
arguments, which allow us to see how the complexified phase-space formalism based on the
stable and unstable manifold theory works in practice.

This paper is organized as follows. In section 2, we start by introducing a 2D barrier
tunnelling model, which can be considered as a minimal model of more realistic models of
chemical reactions. The model consists of a single potential hump localized at the origin in
the reaction coordinates Q and the channel degree of freedom (with coordinate q) described by
a harmonic oscillator [22, 23]. With this model we describe the outline of the new tunnelling
mechanism, explaining how the classical barrier penetration is controlled by the stable and
unstable manifolds Ws,u of the periodic orbit O, which divides product side and reactant
side. Having the classical picture in mind, we next consider the tunnelling spectrum which
is obtained by a fully quantum computation. It is demonstrated that, as the coupling strength
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increases, the shape of the tunnelling spectrum exhibits a characteristic change from a localized
narrow-band spectrum, which is explainable by the well-known instanton picture, to a novel
broad-band spectrum with a remarkable plateau. Here, instead of the original 2D autonomous
model, we introduce a non-autonomous model where the perturbation by the channel degree of
freedom is replaced by a periodically oscillating perturbation. This non-autonomous system
is the same as the one we used in the previous work [19] and well reproduces the characteristic
change of the spectrum. Since the semiclassical analysis for this model is much easier than
that for the original autonomous model, we use it for the theoretical analysis developed in the
following sections.

In section 3, we first introduce the semiclassical S-matrix of periodically perturbed
systems, which is essentially the same as Miller’s classical S-matrix for multi-dimensional
autonomous systems [8]. The treatment of boundary values for complexified classical
trajectories contributing to the S-matrix is discussed by introducing pairwise representations
for the initial values (the set MS ) and the final values (the set LS ) [14, 17]. Particular
attention must be paid to the complex-time integration paths in the complex trajectory analysis.
Choice of integration paths for the classical trajectories in relation to singularities is briefly
discussed, taking the solution of the unperturbed system as a simple example. With the above
preparation, the semiclassical calculation is carried out numerically. The semiclassically
computed tunnelling spectrum reproduces the plateau structure of the fully quantum result
very well. We demonstrate that the initial values of the tunnelling trajectories contributing to
the plateau component of the spectrum form a particular subset localized in the close vicinity of
the intersection between Ws and the initial manifold I, which is defined by the input boundary
condition. Focusing our attention on these characteristic subsets, we give explicit numerical
evidence that the trajectories responsible for the plateau spectrum are those guided by Ws and
landing close to the real space along Wu.

Section 4 is the main part of this paper, in which we develop an analytical theory explaining
the numerically observed semiclassical results. First we introduce an adiabatic solution
combined with the Melnikov-type analysis [18] and discuss the nature of the compexified
trajectories going close to the dividing periodic orbit. Focusing our attention on the critical
point, which is the above-mentioned intersection between Ws and I, a claim is presented for
a general feature of the trajectories starting in a neighbourhood close to the critical point.
The claim predicts that characteristic subsets of MS exist close to the critical point. Next,
considering explicitly the input and output boundary conditions of the semiclassical S-matrix,
we construct analytical expressions for the characteristic subsets contributing dominantly to
the plateau structure. Finally, we evaluate the imaginary part of the action and the amplitude
factor of the trajectories leaving from the characteristic subset and construct the S-matrix
analytically. It turns out that the analytical results reproduce the whole tunnelling spectrum
including the plateau structure. With all these results, though some restrictions are imposed
on the coupling strength and the perturbation frequency, we achieve an analytical description
for the new tunnelling mechanism induced by Ws and Wu of the dividing periodic orbit, which
was first confirmed by a numerical semiclassical study.

Section 5 is devoted to summary and discussion. In particular we reinterpret our theoretical
results in the 1.5D model in terms of the original 2D-autonomous model.

2. Model systems and quantum results

2.1. 2D model

We start with a model system of 2D barrier tunnelling, which is given by the following
Hamiltonian [22, 23],

3



J. Phys. A: Math. Theor. 41 (2008) 095101 K Takahashi and K S Ikeda

Ĥ tot(Q, P̂ , q, p̂) = 1
2 P̂ 2 + V0(Q) + βv2(Q, q) + Hch(q, p̂). (1)

This model can be considered to be a simplified model of a chemical reaction, e.g. collinear
collision between an atom and a diatomic molecule [8, 9].

The unperturbed barrier potential V0(Q) along the reaction coordinate Q and the
interaction potential v2(Q, q) between the reaction and channel degrees of freedom are chosen
to be Eckart-type potentials,

V0(Q) = sech2(Q), v2(Q, q) = q sech2Q. (2)

The Hamiltonian for the channel degree of freedom is represented by the Hamiltonian for a
harmonic oscillator

Hch(q, p) = p̂2/2 + ω2q2/2. (3)

First, we consider the classical dynamics closely related to the new tunnelling mechanism.
When the total energy H(P, p,Q, q) = Etot is larger than the potential energy at its saddle
point (Q, q) = (0, 0), there exists an unstable periodic cycle (saddle) O above the top of the
barrier at Q = (0,−β/ω2), which is the harmonic vibration described by the Hamiltonian
Hch(q, p) + βq with the energy Etot − 1. It forms the transition state separating the product
side from the reactant side [28, 29]. The saddle O is accompanied by the two characteristic
sets called the stable manifold Ws and the unstable manifold Wu. In the classical dynamical
theory of chemical reaction, Ws plays the key role. In figure 1 Ws (blue) and Wu (red) are
shown in a Poincaré surface of the section � on the surface q = 0 when the total energy shell
is fixed to H(P, p,Q, q) = Etot. The Poincaré surface of section is taken on the surface
q = 0 when the trajectory crosses it with q̇ > 0.

Let us consider trajectories starting on the reactant side (Q → +∞) with constant
momentum P = P1(< 0). Then the set of initial conditions of the trajectories, denoted by I,
is the hypersurface P = P1 with Q (mod(2π |P1|/ω)) much larger than the potential width.
In figure 1 the cross-section of the set of trajectories originating from I is also depicted for
two representative cases, namely Ia(green) and Ib (purple), with the initial momentum |P1|
relatively large and small, respectively. The trajectories from Ia intersect with Ws . The subset
indicated by the green bold line passes over the barrier, corresponding to the generation of
reaction products. However, when |P1| is small enough, as in the case of Ib, I no longer
intersects with Ws and there is no transport to the product side. In this regime, the reaction
can only take place through tunnelling processes.

According to the conventional understanding [21], tunnelling occurs from the turning
point of the real manifold (thin purple line) near O to the product side through the instanton
path. However, our new tunnelling theory provides a different picture of tunnelling [14–16,
18–20]: even though Ws and I do not intersect in the real phase space, Ws always intersects
with I at isolated points in the complex phase space if Ws and I are continued analytically
into the complex domain, and there always exist complex trajectories starting close to each
isolated intersection point, which go over the potential barrier towards the product side. Those
trajectories are first guided by Ws , pass close to O, are repelled by it, and eventually go to
infinity along Wu. In our recent studies [18, 19], we demonstrated for a periodically perturbed
barrier system that such trajectories contribute dominantly to the tunnelling when the coupling
strength between the reaction coordinate and the external field (interpreted as the channel
coordinate for the 2D system) is strong enough.

Here in this paper we show numerical results of fully quantum calculation for |P1|
less than the critical value Pmin at which Ws is tangent to I and see how the tunnelling
spectrum changes in shape with the magnitude of coupling strength, reflecting the change of
the underlying classical mechanism.
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Figure 1. Classical dynamical mechanism of reaction shown on the Poincaré surface of section
�: if Ws (blue) intersects with Ia (green), the shaded lobe is transported as L1 → L2 → L3 . . . .

to the product side. When there is no intersection (purple), no trajectories from Ib can reach the
product side.

First, we specify the initial state on the reactant side. Let us introduce the classical
action and angle coordinates for the channel degree of freedom, namely I = Hch/ω and
θ = arctan(ωq/p). Using the action and angle, (I, θ), the classical Hamiltonian is

Htot(Q, P, q, p) = 1
2P 2 + V0(Q) + βv′

2(Q, I, θ) + ωI, (4)

where the interaction term is transformed as

v′
2(Q, I, θ) =

√
2I

ω
sin θ sech2Q. (5)

For quantum calculation, we suppose that an incident wave excited as a channel eigenstate
wn1 with the quantum number n1(�0) is propagating along the reaction coordinate Q from
+∞ with a constant momentum P1:

�in ∝ exp{iP1Q/h̄}wn1 , Q → +∞. (6)

The corresponding classical action is I1 = h̄(n1 + 1/2) and the total energy is given by
Etot = P 2

1

/
2 + h̄ω(n1 + 1/2). As shown in figure 1, classical transition past the barrier is

forbidden under the condition

Etot − h̄ω(n1 + 1/2) < P 2
min

/
2. (7)

In this case, penetration through the product side occurs only by the tunnelling process.
Figure 2 shows typical examples of tunnelling spectra, when condition (7) holds. The fully

quantum tunnelling calculation, which requires very high accuracy, was executed using the
method developed in [24]. The coupling strength, which is defined as the effective perturbation
strength

ε ≡ β
√

2I1/ω = β
√

(2n1 + 1)h̄/ω, (8)

is varied as ε = 0.1, 0.2, 0.4. Every spectrum is represented as a function of the kinetic energy
E2 = P 2

2

/
2 along the reaction coordinate observed in the asymptotic region on the product

side. Each spectrum consists of δ-function spikes of the energy interval h̄ω, and the envelope
of the spectrum changes significantly as ε increases: (a) in the weak perturbation regime,
represented by ε = 0.1, the envelope of the tunnelling spectrum is localized in a narrow band
around the input kinetic energy E1

(=P 2
1

/
2
)
. (b) With a slight increase of ε to 0.2 a shoulder
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Figure 2. tunnelling spectra (absolute value of the S-matrix) of the 2D model for the three
representative values of the effective perturbation strength: (a) blue ε = 0.1, (b) green ε = 0.2,
and (c) red ε = 0.4. E1 = 0.5, ω = 0.3, n1 = 128 and h̄ = 1000/(3π × 210) ∼ 0.1036.

grows on the upper energy side of the main lobe. (c) At the stronger perturbation strength of
ε = 0.4, the shoulder has grown to a level similar to the main lobe and the envelope of the
tunnelling spectrum spreads over a wide range of energy, forming a well-recognizable plateau.
The centre of the plateau shifts to an energy value larger than the input energy E1.

In the weak interaction regime, the fact that the reaction energy is almost conserved
implies that the interaction between the two degrees of freedom at the potential hump is
negligibly small and essentially one-dimensional tunnelling transmission takes place, which
can be described by the instanton. However, in the strong interaction regime, the formation
of a broad plateau means that an exchange of energy between the two degrees of freedom
is activated when the trajectory goes through the potential barrier. The formation of a broad
plateau strongly implies that a new tunnelling mechanism leading to strong mixing between
the two degrees of freedom works in place of the traditional instanton mechanism.

2.2. 1.5D model

Under the assumption that the coupling strength is not very strong, so that the variation of I in
the scattering process is much less than its initial value I1 = (n1 + 1/2)h̄, the classical action
can be replaced by its initial value I1. Thus the action variable I in the interaction potential
(5) can be replaced by the constant c-number I1 and the Hamiltonian of the 2D model (4) is
very well approximated as

Htot(Q, P, θ, I ) ∼ 1
2P 2 + V0(Q) + ε sin θ sech2(Q) + ωI (9)

using the perturbation strength introduced in (8). Under this approximation it is easy to see
that

θ = ωt + θ0 (10)

and the above Hamiltonian is equivalent to that of the periodically perturbed 1D barrier system,
which we studied in the recent works [18, 19]:

H(Q,P,ωt) = 1
2P 2 + V0(Q) + εv1(Q,ωt), (11)
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Figure 3. tunnelling spectra (absolute value of the S-matrix) of the 1.5D model for three values of
ε: (a) blue ε = 0.1, (b) green ε = 0.2 and (c) red ε = 0.4. Other parameters except for n1 are the
same as those in figure 2.

where V0 is the same as that in the 2D model and v1 corresponding to v′
2 is replaced by the

time-dependent potential

v1(Q,ωt) = sin(ωt) sech2(Q). (12)

Here the initial phase θ0 is set to 0 without loss of generality.
The incident wave is coming from Q = +∞ with a constant momentum P1. If the incident

energy E1
(=P 2

1

/
2
)

is taken such that |P1| < Pmin, then the quantum probability observed on
the transmission side is due to the tunnelling effect.

Figure 3 shows the energy spectrum of the non-autonomous 1.5D model at each of the
same values of ε as in figure 2 [19]. In each case, the energy spectrum of the non-autonomous
1.5D model is very similar to that of the corresponding 2D model. This shows that the 1.5D
model well approximates the 2D model, and the same mechanism works to cause the plateau
spectrum in both the 2D and 1.5D models. Since the semiclassical analysis is much more
tractable for the 1.5D model than for the full 2D model, hereafter we adopt the 1.5D model as
the standard model in the following analyses.

3. Semiclassical analysis: numerical studies

3.1. S-matrix of periodically perturbed 1D systems

We start with the semiclassical expression of the S-matrix for periodically perturbed 1D
systems introduced in [17], which is nothing more than the time-dependent analogue of the
‘classical S-matrix’ introduced by Miller for multi-dimensional autonomous systems [8]:

S(E2, E1) ∼ lim
|Q1||Q2|→∞

∑
c.t.

1√
2π ih̄

√|P2||P1|√
P1P2

√
− ∂2SS

∂E1∂E2

× e−i(P2Q2−P1Q1)/h̄ exp

{
i

h̄
SS(Q2, E2,Q1, E1)

}
, (13)
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where subscripts 1 and 2 of dynamical variables stand for input and output, respectively and
the classical action integral is defined by

SS(Q2, E2,Q1, E1) ≡
∫ Q2

Q1

P dQ −
∫ t2

t1

H(Q,P,ωt) dt + E2t2 − E1t1. (14)

This is the generating function and so has the property

t1 = − ∂SS

∂E1
, t2 = ∂SS

∂E2
, (15)

and the amplitude factor can be rewritten as√
∂2SS

∂E1∂E2
=

{
−∂E2(Q2,Q1, E1, t1)

∂t1

}−1/2

. (16)

The summation
∑

c.t. should be taken over all the contributing trajectories satisfying the initial
and final boundary conditions, i.e.,

E = E1
(=P 2

1

/
2
)
, Q = Q1(�1), (17)

E = E2
(=P 2

2

/
2
)
, Q = Q2(→ ±∞), (18)

where E1,2 and Q1,2 are observables in the scattering problem and should take real values.
The trajectories are calculated by the Newtonian equation of motion (or Hamilton’s canonical
equations).

In the tunnelling problem there are no real classical trajectories satisfying the boundary
condition, but the solution is naturally extended to the complex domain, and there exist complex
trajectories connecting the two boundaries and possibly contributing to the tunnelling. Once
the initial boundary (17) is fixed, the trajectory can be labelled by the initial time t1, which
can be looked upon as a search parameter; namely, by moving it over the complex t1-plane we
can look for the trajectories satisfying the initial and final boundary conditions (18), although
we note that this is not an easy task.

In particular, as is discussed later, the non-uniqueness of time integration paths due to the
presence of singularities introduces complications coming from the multiplicity of trajectories,
which is a fundamental feature of the barrier tunnelling problem.

In actual calculation, as discussed in [17], the periodicity of the perturbation helps to
reduce the calculation task. Indeed, only the initial set restricted to a unit period is necessary
to carry out semiclassical calculation. Thus, equation (13) can be reduced to

S(E2, E1) ∼ lim
|Q1||Q2|→∞

∑
n

h̄ωδ(E2 − E1 − nh̄ω)
∑

c.t.∈F∗

1√
2π ih̄

√|P2||P1|√
P1P2

√
− ∂2SS

∂E1∂E2

× e−i(P2Q2−P1Q1)/h̄ exp

{
i

h̄
SS(Q2, E2,Q1, E1)

}
, (19)

where F ∗ = {t1| − T � Re{t1} � 0, (T = 2π/ω)} denotes the reduced zone with the unit
interval of period T. In practice, the spectrum envelope can be calculated from information
for one period of the initial time t1. The comb-like structure implied by the periodic delta
functions in equation (19), which was observed also in the fully quantum spectrum, is the
natural consequence of quantization of the vibronic degrees of freedom.

In the time-dependent scattering problem formulated above, the initial manifold I
describing the set of initial conditions of classical trajectories is specified by the initial time

8
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t1 in addition to the fixed initial conditions Q = Q1(� 1) and P = P1. Since t1 is a variable
search parameter in the complex domain, the initial manifold I can be defined by

I = {(t1,Q, P )|t1 ∈ C,Q = Q1(∈ R), P = P1(∈ R)}. (20)

To obtain the spectrum envelope one has to scan the real parameter E2 with Q2 fixed at a
certain real number, then the search parameter t1 will trace a 1D set on the complex t1 plane,
which has been called the M-set [14, 17]:

MS = {t1 ∈ C|Im{P(t2 − t1, t1, P1,Q1)} = 0,Q(t2 − t1, t1, P1) = Q2(� −1)}, (21)

where (Q(t − t1, t1, P1,Q1), P (t − t1, t1, P1,Q1)) is the classical trajectory leaving from
(Q1, P1) at t = t1. The MS -set enables us to visualize the structure of the set of initial
conditions of contributing trajectories on the search plane. The whole MS -set is not a
connected set but is in general composed of disjointed subsets, each of which is called a
‘branch’. We also introduce the Lagrange manifold, the so-called L-set:

LS = {(Q′, P ′)|Q′ = Q(t − t1, t1, P1,Q1), P
′ = P(t − t1, t1, P1,Q1), t1 ∈ MS , t ∈ R}.

(22)

This is a set composed of the points at which the trajectories leaving from MS arrive at a given
time t. We should remark that the set LS is not, in the precise sense, the phase-space support
of the semiclassical wavefunction, which was first introduced in [14]. By definition, LS-set is
convenient for pursuing the whole trajectories starting at the initial set.

As mentioned above, in the practical semiclassical calculation, we have to take special care
of multi-valuedness of classical solutions due to the existence of singularities. The existence
of singularities is generic in systems evolving with complex time and plays an important role
in understanding tunnelling through barrier potentials. In the following, we briefly explain
the role of singularities of the classical solution in connection with the choice of integration
paths in the complex time plane by taking a static Eckart barrier as a simple example.

3.2. The static barrier and integration paths

The solution of the classical equation of motion for 0 < E1 < 1 at ε = 0 is given by [8, 17]

Q(t − t1,Q1, P1) = sinh−1(λcosh(
√

2E1(t − t0))), (23)

where λ ≡ √
1/E1 − 1 and t0 is the time at which the trajectory hits the turning point Qturn =

± log[λ +
√

λ2 + 1]. Given initial condition (Q = Q1, P = P1) at t = t1, the asymptotic form
of the solution for t1 − t0 → −∞ is, Q1 ∼ log(λ) − √

2E1(t1 − t0) → +∞, P1 = −√
2E1,

and the relation between t0 and t1 is given by t0 − t1 = (Q1 − log λ)/
√

2E1 ≡ t01. For
convenience of analysis, let us introduce the lapse time s = t − t1. In the lapse time the
solution has singularities at

Sg±
n = (Q1 − log λ)/

√
2E1 ± 1√

2E1
sinh−1(1/λ) + i(−n + 1/2)�tI /2, (�tI ≡ 2π/

√
2E1).

(24)

As shown in figure 4, singularities aligned along two lines i.e. entrance singularities
Sg−

n and exit singularities Sg+
n , and the representative integration paths labelled ‘Cn’(n:

integer) have different topology with respect to the singularities. Trajectories defined along
the integration paths homotopic to C2n+1’s make contributions to the tunnelling component,
while trajectories along C2n’s are reflected by the potential barrier [18].

A trajectory defined along any integration path Cn contributes to either a reflected
component or a tunnelling component, but the major contributions come from trajectories
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Figure 4. Singularities and representative integration paths on the lapse time plane.

along the lowest order paths closest to the real axis, namely, C0 (reflection) and C1 (tunnelling).
Trajectories along higher order paths C2, C3, . . . have larger imaginary parts in their classical
actions, and their contributions are exponentially smaller than the lowest order contributions
in the semiclassical limit (h̄ → 0) and thus may be neglected.

3.3. Semiclassical results in the strong perturbation regime

As shown in [18] and briefly mentioned in subsection 2.1, the nature of the classical solution
is much disturbed in the complex domain, once the periodic perturbation is applied. The
initial manifold I defined by equation (20) always intersects with Ws at some complex initial
times t1 = t1c’s in the complex domain, even when the perturbation strength ε or the input
energy E1 is so small that there is no intersection between Ws and I in the real domain. In
accordance with [18], we call t1c critical point. In fact, as was shown by using a Melnikov-like
perturbation method extended into the complex domain in [18], the intersections t1c’s always
exist and the imaginary part of t1c is given by

Im t1c = 1

ω
cosh−1

{
1 − E1

ε(1 − χ(ω))

}
(25)

within the framework of perturbation theory, where χ is defined by

χ(ω) ≡ 2ω

∫ ∞

0

sin ωs

1 + e2
√

2s
ds. (26)

Note that due to the periodicity of perturbation, the critical points t1c’s appear periodically
with the period of the perturbation T with the same value in imaginary part (25).
Equation (25) tells that the critical point t1c is deep in the imaginary plane if the perturbation
strength ε is small enough. Then the trajectory along the lowest order integration path C1

may not be affected by the critical point. This is the case of the weak perturbation regime, in
which the perturbation expansion approach taking the instanton trajectory as the zeroth-order
solution works very well [25].

However, as ε increases the critical point moves towards the real axis and its imaginary
part becomes comparable in magnitude with the lowest order path C1, which drastically
disturbs the original nature of tunnelling trajectories along C1. This is the typical situation in
the ‘strong perturbation regime’, where the plateau spectrum emerges [18].

Now, let us show numerical results for the semiclassical S-matrix. Figure 5 indicates a
typical example of the MS -set obtained in the strong perturbation regime. On the t1-plane,
we also find the critical point t1c indicated by an X. As discussed in section 3.1, the MS -set

10
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Figure 5. MS -set for the S-matrix. Red curves are the complex branches contributing to tunnelling,
while the blue branches contribute to reflection and the black line labelled ‘r’ is the real branch
making reflection. Parts of branches drawn by broken lines indicate non-contributing parts which
are removed by the proper treatment of the Stokes phenomenon [15, 17, 26].

in the reduced zone is enough to calculate the spectrum’s envelope, and so we show only one
cycle.

There are a number of branches on the t1-plane, whose structure seems to be rather
complicated. Among them, only a few branches close to the critical point, namely branches
1, 2 and 3, make major contributions to the tunnelling. Those branches exhibit interesting
structure in the neighbourhood of the critical point.

Figure 6(a) is a magnification of the area close to the critical point t1c. The branches
consist of a straight line passing through t1c and a circle centred at t1c. We denote the straight
line branch and the circle branch by MR and MC , respectively. Two cuts indicated by wavy
lines transverse MC , and they divide MC into a pair of semicircles. Then the upper part and
the lower part of MC should go into different Riemann sheets across the cuts, and the two
parts make different contributions to the S-matrix. That is, trajectories starting from all the
branches in the upper half-plane above the two cuts reach the reflective side, while trajectories
in the lower half-plane go to the transmissive side.

The corresponding LS-set projected on the real phase space in figure 6(b) helps us to see
the asymptotic behaviour of those trajectories in the limit Re t → ∞. The Lagrange manifold
LR corresponding to MR is extended into both the transmissive and reflective sides along the
real unstable manifold indicated by WuR . Thus, most of the trajectories starting from MR
reach very close to WuR . Note that the destination of the trajectory changes as the initial value
t1 moves along MR passing through t1c. Therefore, the branch MR is regarded as a merged
object composed of the tunnelling and the reflective branches of the unperturbed system.
Indeed, the topology of the time integration path switches from C1-like to C2-like (and vice
versa) as t1 moves along MR passing through the critical point. This drastic phenomenon is
induced by a divergent motion of the time singularities Sg+

n ’s: they are ‘movable’ depending
upon t1 in periodically perturbed systems and diverge at t1 = t1c [18].

On the other hand, the Lagrange manifold LC of MC forms whiskers extending from
apexes and anti-apexes of oscillating LR, which extend deep into the imaginary sides along
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(a) (b)

Figure 6. Characteristic branches MR and MC and corresponding LS -set, LR and LC . (a)
Magnified view of MS -set near the critical point. (b) LS -set projected on the real space. WuR

(green thin curve) indicates the real unstable manifold.

Figure 7. Semiclassical results: (a) weights of major contributing branches. The right–left arrow
indicated by WuR means the energy range covered by the real unstable manifold (see figure 6).
The parts contributed by MR and MC are also indicated. A short spike at E2 ∼ 1.4 is an artifact
due to the semiclassical error close to the caustic between branches 2 and 3. (b) Resultant energy
spectrum.

the complex unstable manifold. Paired parts of branches in MC which are symmetric with
respect to MR in the same semicircle form paired branches in the LS-set, which are almost
complex conjugate, so that they seem to be degenerate when projected onto the real phase
space. Note that one of the paired parts taking negative values in the imaginary part of
the classical action is removed by a proper treatment of the Stokes phenomenon to kill its
unphysical contribution [15, 17, 26].

In order to reconstruct the plateau spectrum semiclassically, all we have to do is to
take account of just the contributions from MR and MC on the transmissive side, namely
the branches 2 and 3 in the original picture. Figure 7(a) shows semiclassical weights of
the branches 2 and 3 as functions of E2. It shows that the branches in MR form the
main part of the spectrum, i.e., the flat top of the plateau whose width corresponds to the

12
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amplitude of the oscillation in momentum of the real unstable manifold on the asymptotic side.
Figure 7(b) shows the energy spectrum reconstructed by summing up the weights of the
contributing branches. Its agreement with the pure quantum result in figure 3 is very good.

It is concluded that the tunnelling trajectories making major contribution to the plateau
spectrum, which start at MR (and MC) in the close neighbourhood of t1c, are first guided by
the complexified stable manifold and finally reach close to the real plane following the real
(and complex) unstable manifold. Therefore the plateau is a manifestation of the unstable
manifold in the tunnelling effect.

4. Semiclassical analysis: analytical treatment

4.1. Low-frequency approximation

The numerical calculation in section 3.3 shows that the tunnelling trajectories making major
contribution to the plateau spectrum in the strong perturbation regime are due to the new
tunnelling transport mechanism supported by the complexified stable–unstable manifolds. In
the present section, assuming that the perturbation is sufficiently slowly varying, i.e., ω � 1,
we develop an analytical theory to answer why the characteristic branches MR and MC appear
in the close neighbourhood of the critical point and how they contribute to the formation of
the plateau. Our analysis is based on an analytical solution of the classical equation of motion
which was introduced in [18] to clarify the mechanism of the fringed tunnelling. First, we
review main features of the analytical solution.

The analytical solution is obtained as a natural extension of the unperturbed solution (23):

Y (t) ≡ sinh Q = r(t) cosh φ(t). (27)

The solution satisfies the classical equation of motion derived from the classical Hamiltonian
(11),

Q̈ = 2a(t)
sinh Q

cosh3 Q
, (28)

where

a(t) ≡ 1 + ε sin ωt. (29)

On the assumption that ω � 1, the equations

φ̇(t) =
√

2E(t), (30)

d

dt
{r(t)2φ̇(t)} = 0, namely r(t) = α

{2E(t)}1/4
, (31)

hold and the term containing the higher-order time derivative of the slowly varying amplitude
(r̈) is ignored. In the unperturbed system, when taking the limit λ → 0, the exact solution (23)
gives the orbits approaching O in forward and backward time evolutions, namely solutions on
the stable and unstable manifolds. In the solution (27), λ is replaced by r(t) and the parameter
α plays the same role as the λ, namely the parameter α measures the distance of the trajectory
from the unstable saddle O. Since we are interested in the trajectories going close to the saddle,
α2 is taken to be a very small parameter.

This set of equations (30) and (31) is insufficient for providing a closed form solution:
integrating equation (30) requires E(t) to be an explicit function of t. Thus the energy E(t) is
determined by using the energy equation of motion

Ė = ∂H

∂t
= ȧ(t)

cosh2 Q
= ȧ(t)V0(Q), (32)

13
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Figure 8. Positions of the gates µ∓ in the complex time plane.

as a supplementary equation. We integrate the energy equation by approximating Q(t) with the
unperturbed solution given by equation (23), according to the spirit of Melnikov’s perturbation
theory. Therefore, we suppose that the parameter ε is small enough in the following arguments.
The integration is performed along the time integration path which is topologically the same
as the lowest order tunnelling path C1 of the unperturbed system. For treating the analytical
solution, it is convenient to introduce the particular times called ‘gates’, µ∓, which respectively
mean the entrance and exit of the scattering region where the perturbation has most effect.
The ‘gate’ times are defined as the times at which the potential varies most steeply, namely

d2V0(Q(t))/dt2|t=µ∓ = 0, (33)

which leads to more explicit conditions for them:

e∓φ(µ∓) = 2ein∓π [1 + r(µ∓)2/4]/r(µ∓), (34)

where n∓ are integers determined by the relative positions of µ∓ to the entrance and exit
singularities, respectively. Figure 8 shows the positions of µ∓ on the integration path C1

together with the singularities, marked by ‘x’, on the complex t-plane. The path C1 can
be deformed without changing its topology with respect to the singularities so that it passes
through the gates µ∓ adjacent to it.

Integrating the energy gain equation (32) by using the unperturbed solution (23) for
Q(t) (the Melnikov’s method, see appendix A), the expressions for the energy in the input
asymptotic region, inside the two gates and in the output asymptotic region are respectively
given by

E(t) =
⎧⎨
⎩

h0a(µ−) (Re t � Re µ−)

h0a(t) (Re µ− < Re t < Re µ+)

h0a(µ+) (Re t � Re µ+).

(35)

Here h0 = V0(Q(t0)) is the value of unperturbed potential energy at the particular time t0
between the two gates, which is considered as the time origin of the solution so that the phase
φ(t) vanishes at t = t0, i.e., φ(t0) = 0, and

h0 ∼ 1 − α2/
√

2. (36)

Equation (35) tells us that the energy in each asymptotic region is determined by the energy
at the corresponding gate.

Using equation (35) in equation (30), the explicit expressions for the phase φ(t) follow:
in the time region bounded by the two gates, i.e., Re µ− < Re t < Re µ+,

φ(t) =
∫ t

t0

√
2a(s)h0 ds, (37)
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and in the input and output asymptotic regions, i.e., Re t < Re µ− or Re t > Re µ+,

φ(t) =
∫ µ∓

t0

√
2a(s)h0 ds +

√
2a(µ∓)h0(t − µ∓). (38)

With these relations, one can obtain an explicit expression for the adiabatic solution.
In the asymptotic regions, by substituting equations (35) and (38) into the solution (27)

and using (34) and the input boundary conditions

E(t1) = a(µ−)h0 = E1, Q(t1) = Q1, (39)

the explicit relation between the entrance gate and the initial time is obtained,√
2E1(t1 − µ−) + Q1 = log 2 + α2[4

√
2E1] + O(εω), (40)

where the dominant term in the neglected terms of O(εω) is proportional to ȧ(µ−)/
√

E1.
Equations (39) and (40) provide a set of equations determining t1 and µ− as functions of

the smallness parameter α. Let t1c and µ−c be the values of t1 and µ− for α = 0, then the
relations

α2 = A1(t1 − t1c) = A2(µ− − µ−c) (41)

hold, where A1 and A2 are nearly equal constants:

A1 ∼ A2 ∼
√

2
da(µ−)

dµ−

∣∣∣∣
µ−=µ−c

∼ O(εω). (42)

Recalling that the adiabatic solution represents the stable manifold in the limit α → 0, t1c is the
time at which a trajectory on Ws hits (Q1, P1), and thus it is the critical point. Equation (41)
gives an important relation between the initial time measured from the critical point t1 − t1c

and the smallness parameter α2. We note here that µ−c, which is the entrance gate along the
critical trajectory launched at t1c, satisfies

a(µ−c) = E1. (43)

Using equations (34) and (37) yields another important relation between the two gates

µ+ − µ− ∼ − 1√
2

log α2 + 1√
2
{log 25/2 − inπ} + �µ(µ−, µ+), (44)

where �µ(∼O(ε/ω)) is a periodic function of both µ− and µ+ with the period T (=2π/ω),
and the integer n is determined by n = −(n+ + n−), which, as shown in the next subsection,
defines the destination of the trajectory, reflective or transmissive side. The physical meaning
of equation (44) is evident: it takes a logarithmically long time for a particle to pass through the
scattering region as the trajectory comes close to O. Now, all the tools necessary for discussion
in the following subsections have been provided.

4.2. Trajectories starting in the close neighbourhood of the critical point

In this subsection we first provide the explicit expressions for the adiabatic solution and discuss
their properties. Then, we discuss the key role played by the critical point in the formation of
tunnelling paths, which seems to be quite universal in the barrier tunnelling problem.

In order to clarify the roles of stable and unstable terms in the solution more explicitly,
we introduce a new phase into which the amplitude factor is incorporated:

ϕ−(t) = φ(t) + log 2 − log{α(2E(t))−1/4}. (45)

Then the adiabatic solution is reduced to

Y (t) = sinh Q(t) = α2 eϕ−(t)/(4
√

2E(t)) + e−ϕ−(t). (46)
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Substituting the expression of E(t) given by the Melnikov method (see equation (76)) into
equation (30) and integrating it while keeping lowest order terms of ε, ω and α2, the explicit
expression for ϕ− [18] is obtained:

ϕ−(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2E1(t − t1) − Q1 + log 2 + O(εω) (if Re t � Re µ−)∫ t

µ−

√
2a(s)h0 ds + ϕ−(µ−) + O(εω) (if Re µ− � Re t � Re µ+)

√
2a(µ+)h0(t − µ+) + ϕ−(µ+) + O(εω) (if Re t � Re µ+).

.

(47)

At t = µ−, ϕ−(t) takes a small value except for the correction of O(α2) or O(εω):

ϕ(µ−) ∼ O(α2) + O(εω) (48)

which means that we move the origin of time to the entrance gate.
As equation (47) implies, ϕ−(t) oscillates in the scattering region Re µ− � Re t � Re µ+,

but, if ε is small enough, it is essentially a monotonically increasing function of Re t as in the
case of the unperturbed limit ε = 0. In the forward time evolution, the solution is represented
as a sum of an exponentially decaying stable term and an exponentially growing unstable term
to which the smallness parameter α2 is multiplied. In the limit α2 → 0, only the stable term
e−ϕ−(t) survives, which represents a trajectory converging to O = (0, 0), and so the trajectory
of α = 0 is on the stable manifold Ws of O.

If |α2| is very small but finite, there exists a time regime in which the contributions of the
stable and unstable terms both become very small and the trajectory comes close to the point
O. In such a time regime we have a linearized solution:

(Q(t), P (t)) = (α2 eϕ−(t)/4
√

2a(t) + e−ϕ−(t), α2 eϕ−(t)/4 −
√

2a(t) e−ϕ−(t)). (49)

It is worthwhile remarking on the meaning of the imaginary time evolution due to the
detour of the integration path Cn into the imaginary side (see figure 8). It may take place in the
linear regime in which the exponential growth of the unstable term in equation (49) occurs.
Then it is evident that the imaginary evolution induces a rotation in the complex-Q plane (and
in the P plane as well). From equation (47) the change of ϕ− in the imaginary time evolution
is roughly estimated by i

√
2 × Im �t , where �t is the increment of time.

In the forward time evolution beyond the exit gate, namely Ret > Re µ+ ∼
−Re log(α2/25/2)/

√
2 + µ− (see equation (44)), the exponentially growing unstable term

overcomes the decaying stable term. In order to explore the asymptotic behaviour in this
regime, it is convenient to introduce the counterpart of ϕ− at the exit, which is defined by

ϕ+ ≡ φ(t) − log 2 + log{α(2E(t))−1/4}. (50)

Then the solution (27) is reduced to

Y (t) = sinh Q(t) = eϕ+(t) + α2 e−ϕ+(t)/(4
√

2E(t)). (51)

It is the exit version of equation (46) emphasizing the unstable term. Like ϕ−(t), ϕ+(t) can be
also regarded as a monotonically increasing function with Re t and the real part of ϕ+ takes a
small value at t = µ+, but it has a finite imaginary part. Indeed it takes ϕ+(µ+) ∼ −inπ at
t = µ+, where the index n is the same as the integer n in equation (44), which is confirmed by
combining equations (44), (45), (47), (48) and (50). The index n plays a quite important role:
the sign of that unstable term eϕ+(t), which in the limit Re t → +∞ dominates the behaviour of
Q(t), is determined by Im ϕ+ at t = µ+ such that e−inπ = (−1)−n, and hence the destination
of the trajectory is controlled by n; the transmissive side for odd n and reflective side for
even n.
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The trajectory in the exit range Re t > Re µ+ behaves symmetrically with respect to
the entrance range Re t < Re µ−. First, the system behaves as a free particle in the range
Re t > Re µ+, where ϕ+ is represented as

ϕ+(t) ∼
√

2E∞(t − µ+) − inπ, (52)

where E∞ is the energy in the asymptotic region. Thus, in the limit of Re t → ∞,
equation (51) is approximated as

Q ∼ ±
√

2E∞(t − µ+) + log 2. (53)

On the other hand, from the last equation of equation (35), the energy in the exit range
Re t > Re µ+ is also determined by

E∞ = a(µ+)(1 − α2/
√

2), (54)

which is symmetrical to the first equation of equation (39) in the entrance range.
On the other hand, by letting α2 → 0, the solution (51) represents the trajectory converging

to O in the backward time evolution and hence the trajectory is on the unstable manifold Wu.
Let µ+c be µ+ of the trajectory labelled by α2 = 0. Then it plays the same role as µ−c of the
trajectory on Ws and identifies the trajectory on Wu, and symmetrically to equation (43), it is
related to asymptotic energy E∞ by

E∞ = a(µ+c). (55)

Therefore, similarly to equation (41), the relation

α2 = A′
2(µ+ − µ+c) (56)

holds, where A′
2 = √

2 da(µ+)

dµ+

∣∣
µ+=µ+c

∼ O(εω).
Let U(ρ) be a neighbourhood close to t1c with a small enough radius ρ:

U(ρ) = {t1 ∈ C||t1 − t1c| < ρ}. (57)

Then the smallness parameter characterizing the trajectory satisfies |α2| < ρ|A1|.
From equations (41) and (56) we find that a trajectory starting at any initial time t1 in

U(ρ) is always connected to a nearby trajectory on Wu at the exit of the scattering region with
the same output energy E∞. Since from equation (53) the system behaves as a free particle
beyond µ+(or µ+c) with a fixed momentum, the distance between those two trajectories is
determined by the separation of the coordinates at the exit gate

|δQ| ∼ |
√

2E∞(µ+ − µ+c)| ∼ |
√

2E∞α2/A′
2|, (58)

where use is made of equation (56), and it keeps the same level of separation even at
Re t → +∞. From equation (41), taking t1 closer to t1c, the trajectory reaches closer to
Wu, but it spends a longer time in the scattering region (see equation (44)) before it arrives at
the asymptotic region.

The above results are summarized as follows:

the trajectory leaving from (Q1, P1) at t1 ∈ U(ρ) travels close to Wu in the asymptotic region
in the limit Re t → ∞.

We stress here that Wu in the above claim is the complexified unstable manifold. We can
prove that a converse claim also holds, if the phase space under consideration is restricted to
a certain finite imaginary domain:close to Wu, there always exists a trajectory leaving from
(Q1, P1) at t1 ∈ U(ρ).

Although we do not have enough space to give the detailed proof of the latter claim,
we can present a sketch of the proof as follows. Let St (ρ) be the set composed of the
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end points of all the trajectories at t, which start from (Q1, P1) at t1 ∈ U(ρ). Then the
set St (ρ) is transported towards O travelling along by the critical trajectory leaving from
(Q1, P1) at t = t1c and travelling on Ws . At an appropriately chosen time t∗, St (ρ) comes
close to O, where the trajectory is approximated by equation (49) in the linear regime. Since
µ− = µ−c + O(|α|2/εω), the small stable term e−ϕ−(t∗) is common for all the points in St∗(ρ).
If we neglect the stable term in equation (49), all the points on St∗(ρ) are translated to Wu to
form a subset of the local unstable manifold around O. We denote this subset by W ∗

u (ρ), which
is a disc with radius r∗ ∼ ρ|A1|/d∗(� 1) centred at O because |α2| < ρ|A1| for trajectories
of t1 ∈ U(ρ), where d∗ ∼ e−ϕ∗

− measures the distance between St∗(ρ) and W ∗
u (ρ). As a result,

by reducing ρ with fixing the radius r∗(� 1) small enough (this means to increase Re t∗), we
can make St∗(ρ) approximate W ∗

u (ρ) to any desired accuracy, namely within the precision of
d∗ ∼ ρ|A1|/r∗. This is nothing more than the well-known λ lemma extended in the complex
domain. Observing further the time evolution of St∗(ρ) and W ∗

u (ρ), it can be shown that, for
any point Z ∈ W ∗

u (ρ), one can find a point Z′ ∈ St∗(ρ) such that the distance between the two
forward trajectories emanating from Z and Z′ is of O(|α2|/εω), which is less than const. × ρ.
This comes from the fact that one can make the asymptotic momentum of the trajectory from
Z′ equal to that of the trajectory from Z. Noting that the unstable manifold Wu is obtained by
the forward time evolution of W ∗

u (ρ) and that the distance can be made arbitrarily small by
reducing ρ, then we arrive at the desired claim mentioned above.

The above claims provide a clear basis for conjecturing the nature of MS , namely, the set
of the initial points of trajectories contributing to the semiclassical S-matrix. From the output
boundary condition (18), the final manifold F on which the contributing trajectories should
land is given by

F = {(t,Q, P ) | t ∈ C,Q = Q2(∈ R), P = P2(∈ R)}, (59)

which is the counterpart of the initial manifold I (20) at the exit. To reproduce the tunnelling
spectrum, the real-valued momentum P2 is varied with the fixed Q2 on the product side. If
the complexified Wu intersects with F at t = t2 for a certain value of P2, there should exist a
trajectory starting in U(ρ) and landing at a neighbouring point of the intersection on F . This
is the essence of the new tunnelling mechanism, which would seem to be generic in the multi-
dimensional barrier tunnelling process. Since Wu contains the real unstable manifold WuR as
a subset, F has to intersect with WuR at a real-valued t2 in a relevant range of P2(∈ R). On
the other hand, the complementary component Wu − WuR can also intersect with F for some
other ranges of P2. Corresponding to the two types of the intersection Wu ∩ F , contributing
trajectories starting in U(ρ) are categorized into two types according to their intersection
with F :

(1) the intersection with F is close to WuR ∩ F , where the arrival time t2 is complex but is
expected to be very close to a real value.

(2) the intersection is close to (Wu − WuR) ∩ F , and thus the arrival time t2 can have a
significantly large imaginary part.

In the next section, we show that the two types of characteristic branches MR and MC ,
which we have encountered in the semiclassical calculation, respectively correspond to the
above two types, and the former type plays the key role in the barrier tunnelling.

4.3. Characteristic branches around the critical point

MS -set. Now, we investigate how the characteristic branches MR and MC appear in the
close neighbourhood of the critical point, if the input and output boundary conditions are
imposed on the trajectories. The input boundary condition was already used to obtain the
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relation between α and t1 − t1c (or µ− − µ−c) given by equation (41). We now impose the
output boundary condition E(t2) = E2. We scan E2 over the whole real range to obtain
the set MS of the contributing trajectories, which is achieved by putting E∞ = E2 in
equation (54) and varying it along the real line:

E2 = a(µ+)(1 − α2/
√

2) ∈ R. (60)

Hence, µ+ has to satisfy the relation

Im

{
ε sin(ωµ+) − α2

√
2

}
= 0. (61)

Equation (60) shows that E2 is explicitly represented as a function of µ+ but not of t1. However,
E2 must be a function of t1 through µ+, so that MR and MC are determined as the set of
t1 satisfying equation (61). First, from equation (44), the distance between µ+ and µ− is
represented as a logarithmic function of α. Since µ− − µ−c ∼ O(α2/εω) � O(1) (see
equations (41) and (42)), the entrance gate µ− is well approximated by the gate µ−c and µ+

is rewritten as

µ+ ∼ µ−c + 1√
2
{log 25/2 − log α2 − inπ}

= − 1√
2

log α2 + CR + iCI , (62)

where CR = Re µ−c + 1√
2

log 25/2 and CI = Im µ−c − 1√
2
nπ . Recalling that α2 ∝ t1 − t1c

from equation (41), the parameter α2 is identified with t1, and we are able to see the structure
of the branches MR and MC on α2-plane instead of t1-plane.

Equations (60) and (62) together with equation (41) provide basic relations which relate the
output energy E2 with the input condition t1−t1c and the smallness parameter α2 characterizing
the closeness of the trajectory to O. The relationship among E2, t1 and α2 will be used
frequently in the following arguments.

Relations (61) and (62) yield the equation for the branches MR and MC :

ε cos

(
ω

(
CR − 1√

2
log R

))
sinh

(
ω

(
CI − θ√

2

))
∼ R√

2
sin θ, (63)

where the polar coordinate (R, θ) on complex α2-plane is introduced, i.e., α2 = R eiθ . In the
limit α → 0, the condition in equation (63) is reduced to the two equations:

cos

(
ω

(
CR − 1√

2
log R

))
∼ 0, (64)

sinh

(
ω

(
CI − θ√

2

))
∼ 0. (65)

From these conditions, the branches MR and MC are respectively defined by

MR = {α2|θ = θc ≡
√

2CI or θ = θc + π}, (66)

MC =
{

α2|R = Rm = exp

{
−

√
2

ω

(
m +

1

2

)
π +

√
2CR

}}
. (67)

α2’s that satisfy the former condition of equation (66) form a straight line passing through the
origin of α2-plane, namely t1c on t1-plane. This is the branch MR. The latter condition (67)
constructs a series of concentric circles with a common centre at the origin, which is nothing
more than MC observed numerically. (Note that the integer m does not take a negative value
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Figure 9. Sketch of branches in α2-plane. The black thin lines and circles respectively indicate
the branches MR and MC defined by equations (66) and (67). The red thick curves are actual
branches given by equation (63) with non-zero α, where S1 = cos(ω(CR − 1√

2
log R)) and

S2 = sinh(ω(CI − θ√
2
)), and • indicates the caustic.

because |Rm| � 1 for ω � 1; when Re µ−c ∼ −π/2ω,R0 corresponds to the radius of the
outermost circle of figure 6(a).)

The latter condition (67) results in a series of concentric circles with a common centre at
the origin, which is nothing more than MC observed numerically. The ratio of radii of two
successive circles of MC is estimated by

Rm+1/Rm ∼ exp{−
√

2T/2}. (68)

Note that from equation (61), Im µ+ ∼ 0 for MR, while ω Re µ+ ∼ (
m + 1

2

)
π for MC . The

sets MR and MC are illustrated in figure 9.
The MS -set is decomposed into the straight line (MR) and the circles (MC) only in the

close neighbourhood of the origin, i.e., t1c. Going far from t1c, |α| becomes large, and the
structure of the branches is deformed and finally they lose their characteristic shapes. Even
if |α| � 1, branches observed numerically are, as illustrated in figure 9, neither a circle
nor a straight line in the close vicinity of their intersection (Rm, θc). Precisely speaking,
they do not intersect but form a separated pair of branches. Such a tiny local deformation
is actually reproduced by equation (63) if the small term of O(α2) on the right-hand side of
equation (63) is not neglected. Indeed, the separated pair close to (Rm, θc) is well approximated
by the hyperbola:

(−1)m+1(R − Rm)Rm(θ − θc) ∼
√

2
R2

m

εω2
Rm sin θc ∼ O

(
α6

εω2

)
, (69)

which have the circle MC and the line MR as their asymptotes, and there exists a caustic at
the centre of the hyperbola as shown in figure 9. Such a structure of branches around a caustic
is a typical form of complex domain branches [14, 17]. From equation (69), the gap between
the pair of branches is of O(α3/

√
εω2) and the ratio of it to the radius Rm is estimated as

O(α/
√

εω2). Thus the gap between the branches is negligibly small if |α2| � εω2, and out
of this quite narrow region the branches can be regarded as the product set of MR and MC .
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Figure 10. Correspondence between (a) MS -set and (b) LS -set. The same colour specifies the
corresponding parts of MS -set and LS -set. In (b) the thin black curves, which closely overlap
with coloured branches of LS -set, indicate Wu(t): the wavy curve is WuR(t), while the straight
lines are Wu(t) − WuR(t).

In our numerical calculation (see figure 6(a)), only the outermost circle can be detected.
This is because, from equation (68), other circles inside it become exponentially small and
cannot be calculated within the limit of numerical accuracy. Those inner circles can be
ignored in the semiclassical calculation, because their contributions to the plateau spectrum
are exponentially small due to the amplitude factor (16), which diminishes as t1 → t1c. This
will be discussed in section 4.4.

LS -set. Let us discuss the nature of LS -set corresponding to the characteristic branches MR
and MC . The trajectories starting at the branches defined by equation (63), i.e., MR and MC ,
satisfy the output boundary condition of the S-matrix and take real values in the output energy
E2. As discussed in subsection 4.2, each trajectory specified by µ+ is connected to a trajectory
of µ+c on Wu with the same output energy E2, namely a(µ+c) = E2 ∈ R. We scan E2 from 0
to +∞, then the condition a(µ+c) ∈ R gives the two types of the gate µ+c:

µR
+c = {µ+c|µ+c ∈ R} for 1 − ε � E2 � 1 + ε, (70)

µC
+c = {

µ+c|Reµ+c = (
m + 1

2

)
π, Im µ+c �= 0

}
for E2 < 1 − ε or E2 > 1 + ε. (71)

At a given time t, the set of all the trajectories specified by µ+c in µR
+c or µC

+c forms a slice of
Wu, which we denote by Wu(t). If we restrict µ+c to µ+c ∈ µR

+c, then all the trajectories make
a slice of the real unstable manifold WuR(t), when t is fixed at a real value. On the other hand,
for all the complex µ+c ∈ µC

+c, the trajectories form a 1D subset in Wu(t) − WuR(t), which
looks like whiskers emanating from the apexes and anti-apexes of the oscillating WuR(t) in the
asymptotic region (see figure 10(b), in which WuR(t) accompanied by the whiskers is drawn
by thin black lines). The whiskers further extend deeper into the imaginary plane. Figure 10
schematically illustrates the relation between the branch of MR or MC and the corresponding
branch of LS at a given time t ∈ R. Every part of branches on MR (figure 10 (a)) is mapped
to a part of LS which lies very close to WuR(t) (figure 10(b)). Deviation of the branch of LS
from WuR(t) becomes significant as it goes away from the origin, which is due to the increase
in α2’s (see equation (58)). The parts of LS corresponding to the arc branches along MC
follow the complex whiskers emanating from the turning points of WuR(t).
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The line MR is divided into the two sections by t1c, and the trajectories starting from
different sections land on the opposite sides of the asymptotic region, i.e., the reflection
or transmission side. The topological change of the integration path with respect to the
singularities Sg+

n , which was discussed in subsection 3.3, occurs as t1 goes through t1c. Cuts
should, thus, take place along a line passing through t1c and perpendicular to MR, which
divide a neighbourhood of t1c into two areas: one contributing to the reflection sides and the
other contributing to the transmission side. As a result, a circle of MC is composed of the
two semicircles separated by the cuts, as was shown in figure 6(a). When a branch of MC is
continued analytically across a cut, it goes to a different Riemann sheet. Such a topological
anomaly of branches around t1c should be understood in connection with the logarithmic
divergence of the singularities Sg+

n at t1c [18, 27].

4.4. Evaluation of spectral intensity

In this subsection, we analytically evaluate the spectral intensity of the S-matrix contributed by
MR and MC obtained in the previous subsection. Since the contribution from the trajectory
is mostly determined by the imaginary part of the classical action as ∼ exp(−Im SS/h̄), we
first roughly estimate it.

An important relation comes from equation (15):

Im
∂SS(E1, E2)

∂E2
= Im t2 ∼ Im µ+. (72)

Recall that, from equations (60) and (62), µ+ can be regarded as a function of the energy E2

via the parametric variable α2 = A1(t1 − t1c). The arguments in subsections 4.2 and 4.3 reveal
that, when t1 moves off from t1c along the transmission or the reflection part of MR, Im µ+

takes a nearly zero value, which means that Im SS(E1, E2) remains almost constant in the
range of E2 covered by the relevant branch. On the other hand, as t1 is moved away from an
intersection between MC and MR along the two paired branches of MC, |Im µ+| increases,
resulting in a rapid increase in |Im SS(E1, E2(t1))|: along one branch, Im µ+ increases in the
positive direction and e−Im S/h̄ suffers an exponential drop-off; along the other branch, Im µ+

increases in the negative direction, which gives rise to an exponential increase of the weight,
and it is removed as an unphysical contribution due to the Stokes phenomenon [15, 17].

Hence, the branch MR makes a major contribution to the spectral intensity, and so we
concentrate our attention on it. To evaluate the action SS(E1, E2), we here adopt a more precise
approximation than in the previous subsections. This is because we would like to discuss later
the dependence of Im SS(E1, E2) upon t1(∈ MR) instead of E2. First, the classical action SS

of equation (14) is rewritten as

SS(Q2, E2,Q1, E1) =
∫ t2

t1

{H(Q,P,ωt) − 2V (Q,ωt)} dt + E2t2 − E1t1, (73)

where V (Q,ωt) ≡ V0(Q) + εv1(Q,ωt). The integral∫ t2

t1

V (Q(t), ωt) dt =
∫ t2

t1

a(t)

cosh2Q(t)
dt (74)

can be evaluated by substituting the unperturbed solution (23) into Q(t) and after a long
manipulation, which is outlined in appendix A, we get a very simple result,∫ t2

t1

V (Q(t), ωt) dt ∼
(

1 − λ2

2

) ∫ µ+

µ−
a(t) dt, (75)

where λ = α/(2E10)
1/4 and E10 denotes the energy of the unperturbed solution given as a

solution of α2/
√

2E10 = 1/E10 − 1.
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Next we estimate the energy integral
∫ t2
t1

H(Q(t), P (t), t)) dt = ∫ t2
t1

E(t) dt in
equation (73). Since E(t) itself is computed by integrating the energy gain equation (32), the
energy integral is given as a double integral over t, and some careful treatment is required
for the evaluation of E(t). We compute E(t) up to the correction of O(εω) according to the
outline stated in appendix A:

E(t) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(µ−)

(
1 − α2

√
2a(µ−)

)
+

ȧ(t)

2
√

2E10
log(1 + e2

√
2E10(t−µ−)) (if Re t < Re µ−)

a(t)

(
1 − α2

√
2a(t)

)
+

ȧ(t)

2
√

2E10
log(1 + e−2

√
2E10(t−µ−)) (if Re µ− < Re t < Re t0)

a(t)

(
1 − α2

√
2a(t)

)
− ȧ(t)

2
√

2E10
log(1 + e2

√
2E10(t−µ+)) (if Re t0 < Re t < Re µ+)

a(µ+)

(
1 − α2

√
2a(µ+)

)
− ȧ(t)

2
√

2E10
log(1 + e−2

√
2E10(t−µ+)) (if Re t > Re µ+).

(76)

This provides an improved version of equation (35), where the input and output energies are
respectively given by

E1 = a(µ−)(1 − α2/
√

2a(µ−)), (77)

E2 = a(µ+)(1 − α2/
√

2a(µ+)). (78)

By using equation (76) together with equations (77) and (78), the integral of E over t is
achieved leaving a resultant expression∫ t2

t1

H(Q(t), P (t), ωt) dt ∼
∫ µ+

µ−
a(t)

(
1 − α2

√
2a(t)

)
dt + (µ− − t1)E1 + (t2 − µ+)E2

+
ȧ(µ−)

4E10

π2

12
− ȧ(µ+)

4E10

π2

12
. (79)

Substitution of equations (75) and (79) into equation (73) gives the final expression of SS ,

SS(Q2, E2,Q1, E1) = ε

ω
(cos ωµ+ − cos ωµ−) + 2E1(µ− − t1) + 2E2(t2 − µ+)

−µ−(E1 − 1) + µ+(E2 − 1) +
∫ µ+

µ−

(
α2

√
2E10

− α2

√
2a(t)

)
a(t) dt

+
ȧ(µ−)

4E10

π2

12
− ȧ(µ+)

4E10

π2

12
. (80)

Here we take the boundary condition Im E1 = Im E2 = 0 into account. In particular, we
are interested in the action along the critical trajectory which starts at t1 = t1c, because it is
the key parameter characterizing the intensity of the plateau spectrum, which is contributed
by the branch MR. Taking the limit α2 → 0 and using Im t2 = Im µ+ = 0, we obtain the
imaginary action along the critical trajectory:

Im SSc(Q2, E2,Q1, E1) ∼ − ε

ω
Im cos ωµ−c − Im µ−c(E1 − 1). (81)

Let us compare the analytical evaluation of equation (81) with the numerical result.
Substituting ε = 0.4, ω = 0.3 and E1 = 0.5 into equation (81), and using the estimation
for Im µ−c ∼ Im t1c given by equation (25), SSc is estimated to be ∼ 0.154, which shows a
fairly good agreement with the numerical value Im SSc ∼ 0.192.
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Im SS of trajectories at t1 very close to t1c is well approximated by equation (81). However,
as t1 moves away from t1c along MR, Im SS varies slowly, because Im ∂SS/∂E2 = Im t2 has
small but non-zero values. Taking higher order terms into account (see appendix B for details),
we can estimate the slight variation of Im SS as a function of δt1 ≡ t1 − t1c,

Im �SS ≡ Im SS(t1) − Im SS(t1c) ∼ D1εω
2|δt1| + D2εω

2|δt1|2, (82)

where D1 and D2 are constants of O(1). Unfortunately, we do not succeed in the numerical
evaluation of D1 and D2, but we can conjecture the signs of the constants so as to be consistent
with the numerical semiclassical results. They tell that Im SS increases very slowly as t1 moves
from t1c along the red line of MR in figure 6(a). A significant increase begins beyond a certain
characteristic distance. To be consistent with this observation, we may conjecture that D1 > 0
and D2 > 0. The above-mentioned characteristic value of |δt1| beyond which SS significantly
increases from SSc and hence a marked decrease of the quantum weight ∼e−SS/h̄ is observed
is roughly estimated by

δt1,max ≡ 1

ω
min{h̄/εω,

√
h̄/ε}. (83)

The part of MR in the range |δt1| < δt1,max actually contributes to forming the plateau of the
tunnelling spectrum.

In the above argument we do not take into account the amplitude factor. However, when
t1 comes very close to t1c, the amplitude factor of the semiclassical S-matrix (16) becomes
dominant in the evaluation of the probability weight: as t1 comes closer to t1c, the trajectory
leaving at t1 passes closer to the unstable saddle O, spending longer time in the scattering
region, which results in an exponentially small amplitude factor because of the exponential
instability.

Evaluation of the amplitude factor (16) is done by calculating the partial derivative of
E2 with respect to t1, i.e., ∂E2/∂t1, within the approximation described above. Indeed, as
mentioned in section 4.3, E2 is expressed as a function of t1 and we are able to evaluate the
derivative ∂E2/∂t1 (see appendix C), arriving at the expression of the amplitude factor:

Amp(t1) =
√

∂2SS

∂E1∂E2
∼

((
1√
2δt1

− 1

)
ȧ(µ+) +

A1

2

√
2a(µ+)

)−1/2

∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√ √
2

ȧ(µ+)
δt1 ∼ O

( α

εω

)
(if |δt1| � 1)

O

(√
1

εω

)
(if |δt1| � 1).

(84)

Thus Amp(t1) is proportional to
√

δt1 in the limit t1 → t1c.
Figure 10(a) indicates that, in the close neighbourhood of t1c, an infinite number of similar

branches of MS , each of which consists of circular and radial components, accumulate. As
shown in equation (68), the inner branch is exponentially smaller in radius measured from
t1c than the outer branch. Therefore, the amplitude factor Amp(t1,m) of the mth inner branch
decreases exponentially with m from equations (68) and (84), and their contributions are
negligibly small as compared to that of the outermost branch, namely,

Amp(t1,m)/Amp(t1,m=0) = exp{−
√

2T m/4}. (85)

Combining equations (81), (82) and (84), the spectral intensity contributed by MR is

W(δt1) ∼ C1
√|δt1|√
εω

exp

{
−1

h̄
(Im SS(t1c) + D1εω

2|δt1| + D2εω
2|δt1|2)

}
, (86)
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Figure 11. The weight of MR as a function of ω|δt1|. The theoretical prediction given by
equation (86) (green) with C1 = D1 = D2 = 1 is compared with the numerical result (red).

where C1,D1 and D2 are positive real numbers of O(1). Figure 11 shows the numerically
computed semiclassical probability weight contributed by the branch MR (in figure 6(a)) as
a function of δt1, which is compared with the analytical prediction (86). Here the unknown
parameters are taken as C1 = D1 = D2 = 1. Our result well captures the essential feature of
the probability weight obtained numerically. In the numerical result, the divergence close
to the vertical line at |δt1| = R∗

0 is an artifact due to the caustic, which is inevitable
in the semiclassical treatment. As mentioned above, the inner part |δt1| < R∗

0 does not
make a dominant contribution due to its exponentially smaller amplitude factor, so the major
contribution to the plateau comes from the part R∗

0 < |δt1| < δt1,max. In fact, this dominant
contributing part forms most of the plateau, if the variable δt1 rewritten in terms of the observed
energy E2, using relations (60), (62) and (41) (for an intuitive view see figures 6(a) and 7(a)
compared with figure 11).

In conclusion, the plateau is formed by the tunnelling trajectories which are launched at
the outermost branch of MR in the close neighbourhood of the critical point. They are guided
by the complexified Ws and finally land close to the real phase space following the real Wu.
The broad support of the plateau spectrum is the reflection of Wu stretched in the momentum
direction as illustrated in figure 6(b).

5. Discussion and summary

5.1. Return to the autonomous model

Before summarizing this paper, we interpret our results for the periodically perturbed model
in terms of the original 2D autonomous model. As in section 2.1, we consider an energy shell
with a fixed total energy Etot. Instead of the Poincaré surface of section � shown in figure 1,
we, for convenience of discussion, consider a different Poincaré surface of section �Q, which
is taken at every fixed Q (and so is defined in the channel coordinate (q, p)). If Q is fixed at
Q = Q1 � 1 in the asymptotic region of the reactant side, the initial manifold I with the
given reaction energy P 2

1

/
2 forms an ellipse he = {(q, p)|p2/2 + ω2q2/2 = ech} with the

channel energy (or action) ech = I1ω = Etot − P 2
1

/
2 on the section �Q1 . On the other hand,
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Figure 12. (a) Schematic illustration of the unstable periodic orbit O accompanied by the tubes
formed by Ws and Wc . (b) Intersections of I and Ws on �Q1 at various values of ech, and the set
MR and MC on I. The inset box shows the case for a smaller value of coupling constant β.

the angle variable θ = arctan(ωq/p) specifying a point on the ellipse should be read as the
initial time t1 by the relation θ = ωt (see equation (10)). The intersection between the real
Ws and �Q1 forms a closed curve on �Q1 as shown in figure 12(a). Varying Q from Q1 to
the origin, the intersection of Ws forms a tube which approaches the unstable periodic orbit
O, from which the tube of Wu extended into the product side is emanating, as illustrated in
figure 12(a).

Note that the intersections of Ws with he are, if they occur on the real plane, nothing
more than the critical points emerging in the real phase space, which correspond to the
intersections of Ws and Ia displayed in figure 1. The real classical trajectories from the inside
of Ws can go over the barrier, whereas those from the outside are all reflected by the barrier.
Thus the real initial manifold represented by the ellipse he whose energy e is larger than the
critical energy emax = Etot − P 2

min

/
2 has no real trajectories going across the barrier, and

only the complexified trajectories emanating from the complexified he can go over the barrier.
Extension of he into the complex domain is achieved by complexifying the angle variable
θ = arctan(ωq/p) keeping e at a fixed real number and, as is depicted in figure 12(b), there
emerge complex critical points at the intersections between the complexified Ws and he, which
appear as a complex conjugate pair at θ = θc(ech) and θ = θ∗

c (ech). Note that one of the
critical points, e.g. θ∗

c (ech), making an unphysical contribution is discarded in the semiclassical
calculation with the proper treatment of the Stokes phenomenon [26]. In the close vicinity of
the critical point θc, the set MR, which plays the major role in the tunnelling process, exists.
The trajectories from it end up being along Wu ∩ R2 on �Q on the product side and contribute
to forming the broad plateau in the tunnelling spectrum.

However, as shown in the inset box in figure 12(b), for a smaller value of coupling constant
β, the critical point shifts deeper into the imaginary plane and so does MR, which means that
the actions along the trajectories from MR gain larger imaginary parts and contribute less
to the S-matrix. Instead, the instanton branches, which appear on the lower imaginary side
of the complexified he, become the major carrier of tunnelling probability. The change of
the tunnelling spectrum shown by figure 2 in the order of (c)→(b)→(a) indicates the change
of the underlying classical mechanism making the major tunnelling contribution, from the
new tunnelling mechanism to the instanton mechanism.

In the case that β is fixed but ech is increased (i.e., he is replaced by a larger ellipse), θc(ech)

moves deeper into the imaginary plane, and the depth of the instanton branch in the imaginary
plane, which is estimated by a half period of the instanton orbit for the unperturbed potential
V0(Q), also increases with ech. Thus, without quantitative analysis, we cannot make a definite
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claim as to which of the two mechanisms dominates the tunnelling process. A detailed study
of this problem is beyond the scope of this paper and will be published elsewhere [27].

Recently, Creagh and coworkers developed a semiclassical theory of multi-dimensional
tunnelling, in a situation similar to the situation considered in this paper, by introducing the
reaction operator, which is convenient for visualizing the transmission probability on �Q by
using the Weyl symbol [12]. Their semiclassical formalism taking account of the contribution
to tunnelling from the outside of the tube Ws seems to well reproduce the fully quantum
results, although their tunnelling trajectories relevant for the reaction operator formula are not
the same as those we treated in this paper. Whether or not the tunnelling mechanism discussed
in our papers plays any role in their results is not yet clear. According to the spirit of the
reaction operator, contributions from all the initial states of the channel at a given total energy
Etot are summed up and so the contributions from the branches MR may be concealed by
the averaging effect and/or by the ambiguity inherent in the phase-space representation of
the quantum state. We strongly hope that their approach and ours can be reconciled to better
elucidate an entire view of multi-dimensional barrier tunnelling.

5.2. Summary

In this paper, we have elucidated a key feature of the new universal mechanism for tunnelling
which has been recently proposed in [18]. In this new tunnelling mechanism complex-classical
trajectories are guided by the stable–unstable manifolds emanating from the dividing unstable
periodic orbit above the top of the potential barrier, which has been recently termed the
normally hyperbolic invariant manifold (NHIM) [29–31]. We have demonstrated numerically
and theoretically that this tunnelling mechanism causes a characteristic plateau structure in
the tunnelling spectrum.

Firstly, using an autonomous two-dimensional model of a barrier tunnelling system, we
showed that the tunnelling spectrum computed by a fully quantum method has a characteristic
plateau structure in the regime of strong coupling between the two degrees of freedom. We
also confirmed that the spectrum of the 2D system is reproduced in a simpler model with
a periodic perturbation. This simpler model is suited to detailed analysis of the tunnelling
mechanism and the corresponding spectrum feature.

Secondly, the complex-domain semiclassical theory for the S-matrix is applied, and it
was confirmed numerically that complex classical trajectories guided by the stable–unstable
manifolds reproduce very well the plateau structure observed in the fully quantum tunnelling
spectrum.

Thirdly, a detailed theoretical analysis based on the complex-classical solution, which
is applicable in the low-frequency regime, has been developed to describe analytically the
formation of the plateau spectrum. The following important points were elucidated by the
theoretical analysis.

(1) The complexified stable manifold Ws emanating from the unstable saddle located on top
of the potential always intersects with the initial manifold of the scattering problem I at
any perturbation strength. The intersection points t1c’s are called critical points.

(2) Trajectories starting in a neighbourhood close to the critical points t1c are initially guided
by Ws and eventually approach the unstable manifold Wu. Since Wu has a real component
WuR , the above fact means that in the vicinity of every critical point there is a set MR of
initial conditions of trajectories which eventually approach very rapidly the real plane and
land on the set LR, which is located very close to Wu. Because of their rapid approach to
the real plane these trajectories make dominant contributions to the spectrum.
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(3) The trajectories which land close to WuR contribute equally to the spectrum because the
variation rate of action with respect to the output energy, which is just the arrival time,
has a very small imaginary part (equation (72)). This is the very reason why the spectrum
has a plateau.

The tunnelling mechanism described in the first point was reported previously in [18], but
it is elucidated analytically in detail for the first time in this paper. Together, the above points
constitute a scenario for manifestation of the plateau feature in the tunnelling spectrum.

The key mechanism of the above scenario is that there exist dominantly contributing
tunnelling trajectories which are first guided by the complexified stable manifold and finally
land close to the real plane following the real unstable manifold. This tunnelling mechanism is
not peculiar to our system but is universal and occurs in more complicated systems, and so the
scenario for the manifestation of the plateau structure in the tunnelling spectrum should also
be universal and can be expected to be observed in physical experiments of reactive scattering
systems.

How does the new mechanism appear in more realistic situations? A comprehensive
answer to this question is left to future investigations. However, let us finally comment here
on the issue of theoretically investigating more complicated reactive systems. The model used
in this paper is a minimal model of multi-dimensional barrier tunnelling; the system has only
one channel degree of freedom, and the transition state has only a single unstable saddle. In
more realistic systems the reaction path may be curved, the number of channel degrees of
freedom may be more than one, and there may be more than one saddle in the transition state.

The system studied in this paper is not complex enough to allow the existence of chaos,
and so it cannot be used to study the complicated tunnelling phenomena in the presence of
chaos in the real phase space. Time singularities generic in the complexified trajectories of
continuous-time systems, make the analysis difficult for multi-dimensional continuous-time
systems. However, it has been shown that the tunnelling mechanism described in this paper
also operates in more complicated situations [16].

Map systems are advantageous for studying multi-dimensional tunnelling because they
are time-discretized and are free from complications due to the time singularities generic in
continuous-time systems, and so they are applicable to the study of complicated dynamics
including chaos. Indeed, the complicated nature of chaotic tunnelling exhibited by quantum
maps can be understood in terms of the complexified stable–unstable manifolds of saddles
which are dense in chaotic invariant sets. Moreover, it has been shown that stable and unstable
manifolds are dense in forward and backward Julia sets, respectively [32]. This implies that
Julia sets control chaotic tunnelling [16].

However, as a result of the discretization, the perturbation by other degrees of freedom is
non-analytic in map systems, and it has not been clarified whether they truly capture the features
of the complex phase space of natural systems with analytic interactions. In fact divergence of
the time singularities is closely related to the existence of the trajectories responsible for the
new tunnelling mechanism of our system. Such a relationship is hidden and invisible in the
analysis of the map systems. Nevertheless, it should be emphasized that in spite of apparent
differences between the theoretical descriptions for the continuous-time system and the map
system, the resulting physical mechanisms are very similar in both types of systems.

We further add the remark that the divergence of singularities is even more fundamental
than the existence of Ws and Wu for understanding the complicated process of tunnelling
in multi-dimensional systems. Indeed, even in systems with no saddles, divergence of the
singularities may occur, leading to a tunnelling mechanism similar to the one demonstrated in
this paper [20].
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Appendix A. Melnikov-like evaluation for the potential integral and the
time-dependent total energy

In this appendix, we will show how to evaluate the potential integral and the time-dependent
total energy necessary for the calculation of the classical action SS , which was discussed in
section 4.4. As shown in [18], the Melnikov method applied to integration of the energy gain
equation has an exact solution for the case of trajectories with α = 0, i.e., trajectories on Ws

(or Wu). However, for the case of α �= 0, the Melnikov integral is not calculated exactly and
we have to rely on approximation to execute the integral.

First, we explain the general idea of our approximation. For the case of α �= 0, the time
origin of the integral should be taken at t = t0, at which the phase φ is set at null, φ(t0) = 0
(see equation (37)). From the formation of the solution, t0 converges, in the limit ε → 0, to
the time at which the unperturbed trajectory hits its turning point. The solution is identified
by the two parameters t0 and α: t0 decides the relative phase of the external force to it and
α determines the amount of separation from the saddle O. The energy Eα in the linearized
region is given by

Eα(t) = a(t)/(1 + α2/
√

2Eα(t)) ∼ a(t)(1 − α2/
√

2a(t)). (A.1)

It is confirmed as follows: in the linearized region, the approximation, Q ∼ Y = r(t)coshφ(t)

and P ∼ Ẏ , is justified, then substituting these into the Hamiltonian (11) and using
equation (37) yield the expression of the energy (A.1).

According to the spirit of the Melnikov’s perturbation theory, the solution Q(t) in the
integral under consideration is replaced by the unperturbed solution (23). Then the differences
between t0 and µ∓ are also replaced by those for the unperturbed solution, respectively:

µ∓ − t0 = ∓ sinh−1(1/λ)/
√

2E10 ∼ ∓(log(1/λ) + log(2 + λ2/2))/
√

2E10, (A.2)

where λ2 = α2/
√

2E10 is a small parameter and E10, which is the energy of the unperturbed
solution, is given by taking the limit ε → 0 for equation (A.1), i.e., E10 = 1/(1 + α2/

√
2E10).

Let us first evaluate the integral of V given by equation (74), because it is simpler than
the integration of the energy gain equation. According to our procedure explained above, it is
separated into two parts divided at t = t0:∫ t2

t1

ds
a(s)

cosh2 Q
= −

∫ t1

t0

ds
a(s)

cosh2 Q
+

∫ t2

t0

ds
a(s)

cosh2 Q
, (A.3)

where Q(t) is replaced by the unperturbed solution (23). We confine ourselves to the former
half process in the time regime Re t < Re t0, since the latter half process can be treated
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symmetrically. Under the assumption |α| � 1, we can expand the integral of V from t0 to t1
up to the correction of O(α2) as

∫ t1

t0

ds
a(s)

cosh2 Q
∼

∫ t1−t0

0
dτ

{
a(t0 + τ)

1 + λ2

4 e−2
√

2E10τ

}
(A.4)

−
∫ t1−t0

0
dτ

{
λ2a(t0 + τ)

2
(
1 + λ2

4 e−2
√

2E10τ
)2

}
(A.5)

−
∫ t1−t0

0
dτ

{
λ2a(t0 + τ) e2

√
2E10τ

4
(
1 + λ2

4 e−2
√

2E10τ
)2

}
. (A.6)

On the other hand, as mentioned in subsection 4.1, the perturbation effectively works
only in the scattering region, Re µ− < Re t < Re µ+, namely V0 = 1/ cosh Q(t) ∼ 1 for the
scattering region and V0 ∼ 0 for the asymptotic region, so the integral is roughly estimated as

−
∫ t1

t0

ds
a(s)

cosh2 Q
= −

∫ µ−

t0

ds a(s) + small corrections. (A.7)

Therefore, it is natural to evaluate the integral separately in the scattering region and the
asymptotic region, i.e.,

∫ t1
t0

= ∫ µ−
t0

ds +
∫ t0
µ−

ds. Actually, this separation of the integral allows
the use of a sort of adiabatic approximation as shown below. Let us evaluate each term on
the RHS of the above equation. The integral of equation (A.4) is, for example, rewritten after
change of variables as

equation (A.4) =
∫ µ−

t0

ds a(s) +
∫ t0−µ−

0
dτ ′

{
a(µ− + τ ′)

1 +
(
1 − λ2

2

)
e2

√
2E10τ ′

}

+
∫ t1−µ−

0
dτ ′

{
a(µ− + τ ′)

1 +
(
1 + λ2

2

)
e−2

√
2E10τ ′

}
. (A.8)

In the second and third terms on the RHS of equation (A.8), the time origin is shifted from
t0 to µ− for convenience of expression and their integrands exhibit exponentially damped
oscillations in forward and backward time evolutions, respectively. Therefore, under the
assumption ω � 1 the adiabatic approximation is used for evaluation of those integrals.
Namely, the second term is further reduced as

∫ t0−µ−
0 dτ ′ = ∫ ∞

0 dτ ′ − ∫ ∞
t0−µ−

dτ ′ and the
lowest adiabatic approximation is applied to get the following expression:∫ t0−µ−

0
dτ ′

{
a(µ− + τ ′)

1 +
(
1 − λ2

2

)
e2

√
2E10τ ′

}
= −

∫ ∞

0
dτ

{
a(t0 + τ)

1 + 4
λ2 e2

√
2E10τ

}

+
∫ ∞

0
dτ ′

{
a(µ− + τ ′)

1 +
(
1 − λ2

2

)
e2

√
2E10τ ′

}
∼ −a(t0)

∫ ∞

0
dτ

{
1

1 + 4
λ2 e2

√
2E10τ

}

+ a(µ−)

∫ ∞

0
dτ ′

{
1

1 +
(
1 − λ2

2

)
e2

√
2E10τ ′

}
. (A.9)

Making use of the equality
∫ ∞

0 1/(1 + β eαx) dx = (1/α) log(1 + 1/β) leaves us with∫ t0−µ−

0
dτ ′

{
a(µ− + τ ′)

1 +
(
1 − λ2

2

)
e2

√
2E10τ ′

}
∼ − a(t0)

2
√

2E10
log

(
1 +

λ2

4

)
+

a(µ−)

2
√

2E10
log

(
2 +

λ2

2

)
.

(A.10)
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Taking the limit Re t1 → −∞ and using the same adiabatic approximation also reduces the
last term on the RHS of equation (A.8) to∫ t1−µ−

0
dτ ′

{
a(µ− + τ ′)

1 +
(
1 + λ2

2

)
e−2

√
2E10τ ′

}
∼ − a(µ−)

2
√

2E10
log

(
2 − λ2

2

)
. (A.11)

Within the approximation up to O(λ2), equation (A.4) is therefore estimated as

equation (A.4) ∼
∫ µ−

t0

a(s) ds +
λ2

4
√

2E10
a(µ−) − λ2

8
√

2E10
a(t0). (A.12)

In the same way, equation (A.5) is reduced to

equation (A.5) ∼ −λ2

2

∫ µ−

t0

a(s) ds − λ2

4
√

2E10
a(µ−) + O(λ4), (A.13)

and the contribution from equation (A.6) is

equation (A.6) ∼ λ2

8
√

2E10
a(t0) + O(λ4 log λ2). (A.14)

As a result, we have the expression∫ t0

t1

ds
a(s)

cosh2 Q
∼

(
1 − λ2

2

) ∫ t0

µ−
ds a(s). (A.15)

In the same way the integral from t0 to t2 is evaluated:∫ t2

t0

ds
a(s)

cosh2 Q
∼

(
1 − λ2

2

) ∫ µ+

t0

ds a(s). (A.16)

Combining the results, we get the expression of the integral of V in equation (75).
Next, we integrate the energy gain equation (32) and obtain the approximate expression

for the time-dependent energy. We take the energy Eα(t) in equation (A.1) at t = t0 as the
reference energy so that the energy gain equation is rewritten as

E(t) − Eα(t0) =
∫ t

t0

ds
ȧ(s)

cosh2 Q(s)
. (A.17)

For convenience for applying the adiabatic approximation in the regions, (Re µ− < Re t <

Re t0) and (Re t0 < Re t < Re µ+), the integral is further reduced as

E(t) − Eα(t) =
∫ t

t0

ds

{
ȧ(s)

cosh2 Q(s)
− Ėα(s)

}
, (A.18)

where Ėα(t) ∼ ȧ(t)(1 − α2/2
√

a(t)). As before, we substitute the unperturbed solution
equation (23) into equation (A.18) and make an approximation including terms of up to α2,
which result in

E(t) − Eα(t) ∼
∫ t

t0

ds

{
ȧ(s)

1 + λ2 cosh2(
√

2E10(s − t0))
− Ėα(s)

}

∼
∫ t−t0

0
dτ

{
ȧ(t0 + τ)

1 + λ2

4 e−2
√

2E10τ
− ȧ(t0 + τ)

}
(A.19)

−
∫ t−t0

0
dτs

{
λ2ȧ(t0 + τ)

2
(
1 + λ2

4 e−2
√

2E10τ
)2 − α2ȧ(t0 + τ)

2
√

2a(t0 + τ)

}
(A.20)

31



J. Phys. A: Math. Theor. 41 (2008) 095101 K Takahashi and K S Ikeda

−
∫ t−t0

0
dτ

{
λ2ȧ(t0 + τ) e2

√
2E10τ

4
(
1 + λ2

4 e−2
√

2E10τ
)2

}
. (A.21)

Evaluation of each term of RHS of the above equation is achieved after the recipe described
in the integral of V . After a long manipulation, the results in the range Re t0 > Re t > Re µ−
are as follows,

equation (A.19) ∼ −λ2

8

ȧ(t0)√
2E10

+
ȧ(t)

2
√

2E10
log

(
1 +

(
1 +

λ2

2

)
e−2

√
2E10(t−µ−)

)
, (A.22)

equation (A.20) ∼ −λ2

2
× equation (A.22) − λ2

8
√

2E10
ȧ(t)(1 − tanh(

√
2E10(t − µ−))),

(A.23)

equation (A.21) ∼ λ2

8

ȧ(t0)√
2E10

− λ4

32

ȧ(t)√
2E10

e2
√

2E10(t−µ−). (A.24)

The results in the range Re t < Re µ− are, on the other hand, given by

equation (A.19) ∼ a(µ−) − a(t) − λ2

8

ȧ(t0)√
2E10

+
λ2

4

ȧ(µ−)√
2E10

+
ȧ(t)

2
√

2E10
log

(
1 +

(
1 − λ2

2

)
e2

√
2E10(t−µ−)

)
, (A.25)

equation (A.20) ∼ a(t)
α2

√
2a(t)

− a(µ−)
α2

√
2a(µ−)

− λ2

4

ȧ(µ−)√
2E10

− λ2

4

ȧ(t)√
2E10

{
log

(
1 +

(
1 − λ2

2

)
e2

√
2E10(t−µ−)

)

−
(

1 +

(
1 +

λ2

2

)
e−2

√
2E10(t−µ−)

)−1}
, (A.26)

equation (A.21) ∼ λ2

8

ȧ(t0)√
2E10

− λ4

32

ȧ(t)√
2E10

e2
√

2E10(t−µ−). (A.27)

Thanks to the symmetry of the system, evaluation of each term for the ranges Re µ+ >

Re t > Re t0 and Re t > Re µ+ is achieved in the same way.
Combining all the results obtained above and ignoring terms of O(α2εω), we get the

resultant expression of E(t) as a function of t in equation (76), and in the limits t = t1 → −∞
and t = t2 → +∞, equations (77) and (78) are obtained, respectively.

Appendix B. Evaluation of higher order terms in SS

We evaluate how Im SS varies as one goes off from the critical point along the set MR. To this
end, we first derive an improved expression for the difference between µ− and µ−c, which
is more accurate than equation (41). Indeed, from equations (43) and (77), we obtain the
following expression:

δµ− = µ− − µ−c ∼ a(µ−c)

ȧ(µ−c)

α2

√
2a(µ−c)

∼ α2E1√
2E1

1

ωε cos(ωµ−c)
∼ O

(
α2

ωε

)
. (B.1)
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The final order estimation for δµ− was used throughout the main text. By taking into account
the expression for the critical gate µ−c ∼ (n+3/4)2π/ω+i cosh−1{(1−E1)/ε(1−χ(ω))}/ω,
which is obtained by the Melnikov method (χ is defined by equation (26)) [18], equation (B.1)
is further reduced to

δµ− ∼ α2E1√
2E1

1

iωεsinh(ωIm µ−c)
. (B.2)

Unless Im µ−c is extremely large, the estimation as cos(ωµ−c) ∼ O(ω) and δµ− ∼ O
(

α2

ω2ε

)
is available. Indeed, in our numerical calculation, Im µ−c ∼ Im t1 ∼ 2.57, then it might be
the case and better to adopt the estimation δµ− ∼ O

(
α2

ω2ε

)
.

The trajectory starting from MR at t1, which is deviated from t1c by a very small amount
α2/A1 (see eq(41)), arrives at the final manifold with a given energy E2. Such a trajectory
goes through the exit gate µ+, and arrives at the final manifold, closely following the unstable
manifold Wu. On the other hand, according to the argument in subsection 4.2, there exists a
trajectory along Wu which intersects the same final manifold. This trajectory passes through
the critical exit gate µ+c, and hence µ+c and µ+ are closely connected in the same way as
µ−c and µ− thanks to the symmetry of time evolution around t0. Let us consider the branch
MR, whose LS-set very closely follows the real unstable manifold. Since µ+c ∈ R, from
E2 = a(µ+c) and equation (78), the deviation δµ+ = µ+ − µ+c is estimated as

δµ+ ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a(µ+c)

ȧ(µ+c)

α2

√
2a(µ+c)

∼ α2E2√
2E2

1

ωε cos(ωµ+c)

∼ O

(
α2

εω

)
(if ȧ(µ+c) �= 0 and µ+c ∈ R)

2a(µ+c)

ä(µ+c)

α2

√
2a(µ+c)

∼ O

(
α2

ω2ε

)
(if ȧ(µ+c) = 0 and µ+c ∈ R).

(B.3)

Making a more precise expression than equation (40), which provides the relation between
µ− and t1 together with that between µ−c and t1c, and subtracting one from the other yield

δt1 ≡ t1 − t1c ∼ (1 + O(εω2))δµ− +
α2

8E1
∼ δµ−, (B.4)

and the symmetry of time evolution guarantees the relation

δt2 ≡ t2 − t2c ∼ (1 + O(εω2))δµ+ − α2

8E2
∼ δµ+, (B.5)

where t2c is the time at which the trajectory of µ+c arrives at Q2.
Now we evaluate the deviation of Im SS when t1 is moved along MR from the critical

point t1c. From equation (80), the deviation is given by

Im �SS = Im SS(t1) − Im SS(t1c) ∼
6∑

i=1

Ii,

I1 = Im
ε

ω
((cos ωµ+ − cos ωµ−) − (cos ωµ+c − cos ωµ−c)),

I2 = +2E1Im((µ− − t1) − (µ−c − t1c)) + 2E2Im((t2 − µ+) − (t2c − µ+c)),

I3 = −Im(µ− − µ−c)(E1 − 1) + Im(µ+ − µ+c)(E2 − 1),

I4 = +Im
∫ µ+

µ−

(
α2

√
2E10

− α2

√
2a(t)

)
a(t) dt,

I5 = +Im

(
ȧ(µ−)

4E10
− ȧ(µ−c)

4

)
π2

12
− Im

ȧ(µ+)

4E10

π2

12
.

(B.6)
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The order of magnitude of each term on the RHS of the above equation is estimated as follows:

I1 ∼ −Im ε(δµ+ sin ωµ+c − δµ− sin ωµ−c)

∼ Im(1 − E2)δµ+ − Im(1 − E1)δµ− ∼ O(ε) × O(δt1),

I2 ∼ Im(O(εω2)δµ− − α2/4 − O(εω2)δµ+ − α2/4)

∼ O(εω2) × O(δt1),

I3 ∼ Im(1 − E1)δµ− − Im(1 − E2)δµ+

∼ O(ε) × O(δt1),

I4 ∼ Im
∫ µ+

µ−
(O(α4) + O(εα2))a(t) dt

∼ Im((µ+ − µ−)(O(α4) + O(εα2)) ∼ (O(α4 log α) + O(εα2 log α)),

I5 ∼ O(εω2) × O(δt1).

I1 and I3 are in the same order of O(ε) × O(δt1) and dominate others, but they cancel out
in O(ε) × O(δt1). An improved calculation taking higher order corrections into account, for
example, by making use of E1,2 = a(µ∓c) − εχ(ω) sin ωµ∓c ∼ a(µ∓c) + O(εω2), results in

I1 + I3 ∼ O(εω2) × O(δt1) + O(εω2) × O(δt2
1 ). (B.7)

Note that the second most dominant terms I2 and I5 are of O(εω2) × O(δt1). Therefore, the
estimation

Im �SS ∼ O(εω2) × |δt1| + O(εω2) × |δt1|2 (B.8)

is obtained. When δt1 ∼ δµ± ∼ O(α2/εω), the result may be rewritten as

Im �SS ∼ O(εω2) × |δt1| + O(εω) × |δt1|2. (B.9)

Appendix C. Evaluation of amplitude factor

Equation (78) indicates that E2 is a function of µ+. Furthermore, µ+ is a function of t1 (or δt1)
from equations (44) and (B.1). Thus the partial derivative ∂E2/∂t1 immediately leads to

∂E2(Q2,Q1, E1, t1)

∂t1
= ∂µ+

∂t1
ȧ(µ+)

(
1 − 1

2

α2

√
2a(µ+)

)
− A1

2

√
2a(µ+). (C.1)

Next we see how µ+ depends explicitly on t1. Equation (44) is rewritten as

µ+ ∼ µ− − 1√
2

log(A1(t1 − t1c)) + C + �µ, (C.2)

by using equation (41), where C is a constant and �µ is a periodic function of the period T,
whose derivative gives only a small contribution of O(ε). Since the particle moves freely for
Re t < Re µ− with the constant momentum P1, µ− is well approximated by ∼ t1 + const. (see
equation (40)). We thus obtain

∂µ+

∂t1
∼ 1 − A1√

2α2
+ O(ε) ∼ 1 − 1√

2(t1 − t1c)
. (C.3)

Putting it into equation (C.1) yields

∂E2(Q2,Q1, E1, t1)

∂t1
∼

(
1 − 1√

2(t1 − t1c)

)
ȧ(µ+)

(
1 − 1

2

α2

√
2a(µ+)

)
− A1

2

√
2a(µ+).

(C.4)

Substituting it into equation (16) and ignoring O(α2εω), we get equation (84).
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